Best proximity pair and fixed point results for noncyclic mappings in modular spaces
نویسندگان
چکیده
منابع مشابه
Best proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملBest Proximity Pair Theorems for Noncyclic Mappings in Banach and Metric Spaces
Let A and B be two nonempty subsets of a metric space X. A mapping T : A∪B → A∪B is said to be noncyclic if T (A) ⊆ A and T (B) ⊆ B. For such a mapping, a pair (x, y) ∈ A×B such that Tx = x, Ty = y and d(x, y) = dist(A,B) is called a best proximity pair. In this paper we give some best proximity pair results for noncyclic mappings under certain contractive conditions.
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملBest proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arab Journal of Mathematical Sciences
سال: 2018
ISSN: 1319-5166
DOI: 10.1016/j.ajmsc.2018.02.002